نمایش نتایج: از 1 به 4 از 4

موضوع: G code چیست؟

  1. #1
    مدیر کل سایت

    [ ]
    تاریخ عضویت
    2011/04/02
    محل سکونت
    شیراز
    نوشته ها
    598
    میزان امتیاز
    10
    Array

    پیش فرض G code چیست؟

    جی کد ها دستور برنامه هائی هستند که وظیفه کنترل موقعیت و اعمال فرامین اصلی را به سی ان سی دارند.
    این دستورات شامل اعمال حرکت محورها، زمان تاخیر و … می باشند.

    لیست جی کدها و کارایی هایشان:

    G00
    RAPID POSITIONING/TRAVERSE
    حرکت سریع بدون فرمان(برش) :
    از این فرمان برای حرکت سریع محورها استفاده می شود که اکثرا برای حرکت به سمت نقطه صفر (Homing) و حرکت به سمت نقطه صفر مجازی
    استفاده می شود(coordinate).
    ****
    G01
    LINEAR INTERPOLATION
    سرعت حرکت خطی:
    از این فرمان برای حرکت محور در راستای خط مستقیم استفاده می شود.
    ****
    G02
    G0
    3
    CIRCULAR INTERPOLATION
    حرکت چرخشی:
    از این فرمان برای حرکت محور در مسیر دایره ای و کمان داراستفاده می شود.
    از G03 حرکت درجهت پادساعتگرد و G02 برای حرکت در جهت ساعتگرد استفاده می شود.
    ****
    G04
    DWELL
    وقفه:
    از این فرمان جهت فرمان زمان تاخیر استفاده می شود.
    اگر بعد از این فرمان کاراکترXاستفاده شود زمان تاخیر بر حسب ثانیه و اگر کاراکترP استفاده شود زمان تاخیر بر حسب میلی ثانیه می باشد .
    G04: X10.0 , G04: P10.0
    ****
    G20
    G21

    IMPERIAL /METRIC DATA INPUT
    تعیین واحد مقادیر:
    این فرمان نوع مقادیر بر حسب متریک و اینچ را مشخص می کند.
    اگر ازG20استفاده شود مقادیر بر حسب اینچ خوانده می شوند.
    اگر ازG21استفاده شود مقادیر بر حسب میلی متر خوانده می شوند.
    ****
    G27
    G28
    G29

    REFERENCE POINT RETURN
    دستور برگشت به نقطه صفر (Home)
    ****
    G42
    G40
    G41

    CUTTER COMPENSATION
    دستورات جبران برش :
    این فرمان مقادیرOffsetرا بسته به نوع ماشین اعمال می کند.
    G41 : جبران سازی در جهت چپ(-)
    G42: جبران سازی در جهت راست(+)
    G40: لغو جبران سازی
    ****

    G73
    G89

    CANNED CYCLES
    سیکل های برنامه:
    سیکل ها ، زیر برنامه هائی هستند که برای کوتاه شدن حجم و خط برنامه در ماشین های خاص مورد استفاده قرار می گیرند.
    ****
    G90
    ABSOLUTE ZERO COMMAND
    تعیین مقدار مطلق(ABSOLUTE)
    به مقادیر واقعی مختصات در صفحه مختصات، مقادیر مطلق اطلاق می شود.
    ****
    G91
    INCREMENTAL COMMAND
    تعیین مقدار افزایشی (INCREMENTAL)
    ****
    G94
    FEED PER MINUTE
    تعیین واحد سرعت بر دقیقه:
    اگر ازG20 استفاده شود سرعت برابر اینچ بر دقیقه است
    اگر ازG21 ستفاده شود سرعت برابر میلی متر بر دقیقه است
    ****
    G95
    FEED PER REVOLUTION
    تعیین واحد سرعت چرخش:
    این جی کد در دستگاههائی که مقادیر انکدر خوانده میشود کاربرد دارد.
    ****
    G98
    RETURN TO INITIAL LEVEL
    برگشت به حالت اولیه:
    این جی کد تمامی سیکل را را غیر فعال می کند .
    ****
    G99
    RETURN TO R POINT LEVEL
    برگشت به نقطه اولیه
    ****
    G170
    G171
    G172
    G173

    CIRCULAR/RECTANGULAR POCKET CANNED CYCLES
    در مجالی که برایم باقیست، باز هم همراه شما مدرسه ای می سازم

    که در آن همواره اول صبح به زبانی ساده، مهر تدریس کنند و بگویند خدا، خالق زیبایی و سراینده عشق، آفریننده ماست.

  2. #2
    مدیر کل سایت

    [ ]
    تاریخ عضویت
    2011/04/02
    محل سکونت
    شیراز
    نوشته ها
    598
    میزان امتیاز
    10
    Array

    پیش فرض

    لیست جی کدها با توضیحات انگلیسی:

    Code Description Milling
    ( M )
    Turning
    ( T )
    Corollary info
    G00 Rapid positioning M T On 2- or 3-axis moves, G00 (unlike G01) traditionally does not necessarily move in a single straight line between start point and end point. It moves each axis at its max speed until its vector is achieved. Shorter vector usually finishes first (given similar axis speeds). This matters because it may yield a dog-leg or hockey-stick motion, which the programmer needs to consider depending on what obstacles are nearby, to avoid a crash. Some machines offer interpolated rapids as a feature for ease of programming (safe to assume a straight line).
    G01 Linear interpolation M T The most common workhorse code for feeding during a cut. The program specs the start and end points, and the control automatically calculates (interpolates) the intermediate points to pass through that will yield a straight line (hence "linear"). The control then calculates the angular velocities at which to turn the axis leadscrews via their servomotors or stepper motors. The computer performs thousands of calculations per second, and the motors react quickly to each input. Thus the actual toolpath of the machining takes place with the given feedrate on a path that is accurately linear to within very small limits.
    G02 Circular interpolation, clockwise M T Very similar in concept to G01. Again, the control interpolates intermediate points and commands the servo- or stepper motors to rotate the amount needed for the leadscrew to translate the motion to the correct tool tip positioning. This process repeated thousands of times per minute generates the desired toolpath. In the case of G02, the interpolation generates a circle rather than a line. As with G01, the actual toolpath of the machining takes place with the given feedrate on a path that accurately matches the ideal (in G02's case, a circle) to within very small limits. In fact, the interpolation is so precise (when all conditions are correct) that milling an interpolated circle can obviate operations such as drilling, and often even fine boring. Addresses for radius or arc center: G02 and G03 take either an R address (for the radius desired on the part) or IJK addresses (for the component vectors that define the vector from the arc start point to the arc center point). Cutter comp: On most controls you cannot start G41 or G42 in G02 or G03 modes. You must already have compensated in an earlier G01 block. Often a short linear lead-in movement will be programmed, merely to allow cutter compensation before the main event, the circle-cutting, begins. Full circles: When the arc start point and the arc end point are identical, a 360° arc, a full circle, will be cut. (Some older controls cannot support this because arcs cannot cross between quadrants of the cartesian system. Instead, four quarter-circle arcs are programmed back-to-back.)
    G03 Circular interpolation, counterclockwise M T Same corollary info as for G02.
    G04 Dwell M T Takes an address for dwell period (may be X, U, or P). The dwell period is specified by a control parameter, typically set to milliseconds. Some machines can accept either X1.0 (s) or P1000 (ms), which are equivalent. Choosing dwell duration: Often the dwell needs only to last one or two full spindle rotations. This is typically much less than one second. Be aware when choosing a duration value that a long dwell is a waste of cycle time. In some situations it won't matter, but for high-volume repetitive production (over thousands of cycles), it is worth calculating that perhaps you only need 100 ms, and you can call it 200 to be safe, but 1000 is just a waste (too long).
    G05 P10000 High-precision contour control (HPCC) M Uses a deep look-ahead buffer and simulation processing to provide better axis movement acceleration and deceleration during contour milling
    G05.1 Q1. AI Advanced Preview Control M Uses a deep look-ahead buffer and simulation processing to provide better axis movement acceleration and deceleration during contour milling
    G06.1 Non-uniform rational B-spline (NURBS) Machining M Activates Non-Uniform Rational B Spline for complex curve and waveform machining (this code is confirmed in Mazatrol 640M ISO Programming)
    G07 Imaginary axis designation M
    G09 Exact stop check, non-modal M T The modal version is G61.
    G10 Programmable data input M T Modifies the value of work coordinate and tool offsets[6]
    G11 Data write cancel M T
    G12 Full-circle interpolation, clockwise M Fixed cycle for ease of programming 360° circular interpolation with blend-radius lead-in and lead-out. Not standard on Fanuc controls.
    G13 Full-circle interpolation, counterclockwise M Fixed cycle for ease of programming 360° circular interpolation with blend-radius lead-in and lead-out. Not standard on Fanuc controls.
    G17 XY plane selection M
    G18 ZX plane selection M T On most CNC lathes (built 1960s to 2000s), ZX is the only available plane, so no G17 to G19 codes are used. This is now changing as the era begins in which live tooling, multitask/multifunction, and mill-turn/turn-mill gradually become the "new normal". But the simpler, traditional form factor will probably not disappear—it will just move over to make room for the newer configurations. See also V address.
    G19 YZ plane selection M
    G20 Programming in inches M T Somewhat uncommon except in USA and (to lesser extent) Canada and UK. However, in the global marketplace, competence with both G20 and G21 always stands some chance of being necessary at any time. The usual minimum increment in G20 is one ten-thousandth of an inch (0.0001"), which is a larger distance than the usual minimum increment in G21 (one thousandth of a millimeter, .001 mm, that is, one micrometre). This physical difference sometimes favors G21 programming.
    G21 Programming in millimeters (mm) M T Prevalent worldwide. However, in the global marketplace, competence with both G20 and G21 always stands some chance of being necessary at any time.
    G28 Return to home position (machine zero, aka machine reference point) M T Takes X Y Z addresses which define the intermediate point that the tool tip will pass through on its way home to machine zero. They are in terms of part zero (aka program zero), NOT machine zero.
    G30 Return to secondary home position (machine zero, aka machine reference point) M T Takes a P address specifying which machine zero point is desired, if the machine has several secondary points (P1 to P4). Takes X Y Z addresses which define the intermediate point that the tool tip will pass through on its way home to machine zero. They are in terms of part zero (aka program zero), NOT machine zero.
    G31 Skip function (used for probes and tool length measurement systems) M
    G32 Single-point threading, longhand style (if not using a cycle, e.g., G76) T Similar to G01 linear interpolation, except with automatic spindle synchronization for single-point threading.
    G33 Constant-pitch threading M
    G33 Single-point threading, longhand style (if not using a cycle, e.g., G76) T Some lathe controls assign this mode to G33 rather than G32.
    G34 Variable-pitch threading M
    G40 Tool radius compensation off M T Turn off cutter radius compensation (CRC). Cancels G41 or G42.
    G41 Tool radius compensation left M T Turn on cutter radius compensation (CRC), left, for climb milling.
    Milling: Given righthand-helix cutter and M03 spindle direction, G41 corresponds to climb milling (down milling). Takes an address (D or H) that calls an offset register value for radius.
    Turning: Often needs no D or H address on lathes, because whatever tool is active automatically calls its geometry offsets with it. (Each turret station is bound to its geometry offset register.) G41 and G42 for milling has been partially automated and obviated (although not completely) since CAM programming has become more common. CAM systems allow the user to program as if with a zero-diameter cutter. The fundamental concept of cutter radius compensation is still in play (i.e., that the surface produced will be distance R away from the cutter center), but the programming mindset is different; the human does not choreograph the toolpath with conscious, painstaking attention to G41, G42, and G40, because the CAM software takes care of it. The software has various CRC mode selections, such as computer, control, wear, reverse wear, off, some of which do not use G41/G42 at all (good for roughing, or wide finish tolerances), and others which use it so that the wear offset can still be tweaked at the machine (better for tight finish tolerances).
    G42 Tool radius compensation right M T Turn on cutter radius compensation (CRC), right, for conventional milling. Similar corollary info as for G41. Given righthand-helix cutter and M03 spindle direction, G42 corresponds to conventional milling (up milling).
    G43 Tool height offset compensation negative M Takes an address, usually H, to call the tool length offset register value. The value is negative because it will be added to the gauge line position. G43 is the commonly used version (vs G44).
    G44 Tool height offset compensation positive M Takes an address, usually H, to call the tool length offset register value. The value is positive because it will be subtracted from the gauge line position. G44 is the seldom-used version (vs G43).
    G45 Axis offset single increase M
    G46 Axis offset single decrease M
    G47 Axis offset double increase M
    G48 Axis offset double decrease M
    G49 Tool length offset compensation cancel M Cancels G43 or G44.
    G50 Define the maximum spindle speed T Takes an S address integer which is interpreted as rpm. Without this feature, G96 mode (CSS) would rev the spindle to "wide open throttle" when closely approaching the axis of rotation.
    G50 Scaling function cancel M
    G50 Position register (programming of vector from part zero to tool tip) T Position register is one of the original methods to relate the part (program) coordinate system to the tool position, which indirectly relates it to the machine coordinate system, the only position the control really "knows". Not commonly programmed anymore because G54 to G59 (WCSs) are a better, newer method. Called via G50 for turning, G92 for milling. Those G addresses also have alternate meanings (which see). Position register can still be useful for datum shift programming. The "manual absolute" switch, which has very few useful applications in WCS contexts, was more useful in position register contexts, because it allowed the operator to move the tool to a certain distance from the part (for example, by touching off a 2.0000" gage) and then declare to the control what the distance-to-go shall be (2.0000).
    G52 Local coordinate system (LCS) M Temporarily shifts program zero to a new location. It is simply "an offset from an offset", that is, an additional offset added onto the WCS offset. This simplifies programming in some cases. The typical example is moving from part to part in a multipart setup. With G54 active, G52 X140.0 Y170.0 shifts program zero 140 mm over in X and 170 mm over in Y. When the part "over there" is done, G52 X0 Y0 returns program zero to normal G54 (by reducing G52 offset to nothing). The same result can also be achieved (1) using multiple WCS origins, G54/G55/G56/G57/G58/G59; (2) on newer controls, G54.1 P1/P2/P3/etc. (all the way up to P48); or (3) using G10 for programmable data input, in which the program can write new offset values to the offset registers. Which method to use depends on shop-specific application.
    G53 Machine coordinate system M T Takes absolute coordinates (X,Y,Z,A,B,C) with reference to machine zero rather than program zero. Can be helpful for tool changes. Nonmodal and absolute only. Subsequent blocks are interpreted as "back to G54" even if it is not explicitly programmed.
    G54 to G59 Work coordinate systems (WCSs) M T Have largely replaced position register (G50 and G92). Each tuple of axis offsets relates program zero directly to machine zero. Standard is 6 tuples (G54 to G59), with optional extensibility to 48 more via G54.1 P1 to P48.
    G54.1 P1 to P48 Extended work coordinate systems M T Up to 48 more WCSs besides the 6 provided as standard by G54 to G59. Note floating-point extension of G-code data type (formerly all integers). Other examples have also evolved (e.g., G84.2). Modern controls have the hardware to handle it.
    G61 Exact stop check, modal M T Can be canceled with G64. The non-modal version is G09.
    G62 Automatic corner override M T
    G64 Default cutting mode (cancel exact stop check mode) M T Cancels G61.
    G70 Fixed cycle, multiple repetitive cycle, for finishing (including contours) T
    G71 Fixed cycle, multiple repetitive cycle, for roughing (Z-axis emphasis) T
    G72 Fixed cycle, multiple repetitive cycle, for roughing (X-axis emphasis) T
    G73 Fixed cycle, multiple repetitive cycle, for roughing, with pattern repetition T
    G73 Peck drilling cycle for milling – high-speed (NO full retraction from pecks) M Retracts only as far as a clearance increment (system parameter). For when chipbreaking is the main concern, but chip clogging of flutes is not. Compare G83.
    G74 Peck drilling cycle for turning T
    G74 Tapping cycle for milling, lefthand thread, M04 spindle direction M See notes at G84.
    G75 Peck grooving cycle for turning T
    G76 Fine boring cycle for milling M Includes OSS and shift (oriented spindle stop and shift tool off centerline for retraction)
    G76 Threading cycle for turning, multiple repetitive cycle T
    G80 Cancel canned cycle M T Milling: Cancels all cycles such as G73, G81, G83, etc. Z-axis returns either to Z-initial level or R level, as programmed (G98 or G99, respectively).
    Turning: Usually not needed on lathes, because a new group-1 G address (G00 to G03) cancels whatever cycle was active.
    G81 Simple drilling cycle M No dwell built in
    G82 Drilling cycle with dwell M Dwells at hole bottom (Z-depth) for the number of milliseconds specified by the P address. Good for when hole bottom finish matters. Good for spot drilling because the divot will be certain to clean up evenly. Consider the "choosing dwell duration" note at G04.
    G83 Peck drilling cycle (full retraction from pecks) M Returns to R-level after each peck. Good for clearing flutes of chips. Compare G73.
    G84 Tapping cycle, righthand thread, M03 spindle direction M G74 and G84 are the righthand and lefthand "pair" for old-school tapping with a non-rigid toolholder ("tapping head" style). Compare the rigid tapping "pair", G84.2 and G84.3.
    G84.2 Tapping cycle, righthand thread, M03 spindle direction, rigid toolholder M See notes at G84. Rigid tapping synchronizes speed and feed according to the desired thread helix. That is, it synchronizes degrees of spindle rotation with microns of axial travel. Therefore it can use a rigid toolholder to hold the tap. This feature is not available on old machines or newer low-end machines, which must use "tapping head" motion (G74/G84).
    G84.3 Tapping cycle, lefthand thread, M04 spindle direction, rigid toolholder M See notes at G84 and G84.2.
    G85 boring cycle, feed in/feed out M
    • Good cycle for a reamer.
    • In some cases good for single-point boring tool, although in other cases the lack of depth of cut on the way back out is bad for surface finish, in which case, G76 (OSS/shift) can be used instead.
    • If need dwell at hole bottom, see G89.
    G86 boring cycle, feed in/spindle stop/rapid out M Boring tool will leave a slight score mark on the way back out. Appropriate cycle for some applications; for others, G76 (OSS/shift) can be used instead.
    G87 boring cycle, backboring M For backboring. Returns to initial level only (G98); this cycle cannot use G99 because its R level is on the far side of the part, away from the spindle headstock.
    G88 boring cycle, feed in/spindle stop/manual operation M
    G89 boring cycle, feed in/dwell/feed out M G89 is like G85 but with dwell added at bottom of hole.
    G90 Absolute programming M T (B) Positioning defined with reference to part zero.
    Milling: Always as above.
    Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), G90/G91 are not used for absolute/incremental modes. Instead, U and W are the incremental addresses and X and Z are the absolute addresses. On these lathes, G90 is instead a fixed cycle address for roughing.
    G90 Fixed cycle, simple cycle, for roughing (Z-axis emphasis) T (A) When not serving for absolute programming (above)
    G91 Incremental programming M T (B) Positioning defined with reference to previous position.
    Milling: Always as above.
    Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), G90/G91 are not used for absolute/incremental modes. Instead, U and W are the incremental addresses and X and Z are the absolute addresses. On these lathes, G90 is a fixed cycle address for roughing.
    G92 Position register (programming of vector from part zero to tool tip) M T (B) Same corollary info as at G50 position register.
    Milling: Always as above.
    Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), position register is G50.
    G92 Threading cycle, simple cycle T (A)
    G94 Feedrate per minute M T (B) On group type A lathes, feedrate per minute is G98.
    G94 Fixed cycle, simple cycle, for roughing (X-axis emphasis) T (A) When not serving for feedrate per minute (above)
    G95 Feedrate per revolution M T (B) On group type A lathes, feedrate per revolution is G99.
    G96 Constant surface speed (CSS) T Varies spindle speed automatically to achieve a constant surface speed. See speeds and feeds. Takes an S address integer, which is interpreted as sfm in G20 mode or as m/min in G21 mode.
    G97 Constant spindle speed M T Takes an S address integer, which is interpreted as rev/min (rpm). The default speed mode per system parameter if no mode is programmed.
    G98 Return to initial Z level in canned cycle M
    G98 Feedrate per minute (group type A) T (A) Feedrate per minute is G94 on group type B.
    G99 Return to R level in canned cycle M
    G99 Feedrate per revolution (group type A) T (A) Feedrate per revolution is G95 on group type B.
    در مجالی که برایم باقیست، باز هم همراه شما مدرسه ای می سازم

    که در آن همواره اول صبح به زبانی ساده، مهر تدریس کنند و بگویند خدا، خالق زیبایی و سراینده عشق، آفریننده ماست.

  3. #3
    مدیر کل سایت

    [ ]
    تاریخ عضویت
    2011/04/02
    محل سکونت
    شیراز
    نوشته ها
    598
    میزان امتیاز
    10
    Array

    پیش فرض نمونه جی کد کنترلر فانوک

    Machine name: I Challenger
    Control: Fanuc
    Inch/Metric: Both
    Absolute/Incremental: Absolute
    ********************

    جی کدها از اینجا شروع می شوند
    ********************
    %
    O0001(I-Challenger_TEST_POSTS _ Thu May 03 12:16:57 2012')
    N0010 G90
    N0020 G92
    N0030 M31
    N0040 G00 X0.9655 Y2.25(RAP 1)
    N0050 M60
    N0060 M86
    N0070 G01 G42 X0.995
    N0080 Y1.5
    N0090 G03 X1.5 Y0.995 I0.505 J0.0
    N0100 G01 X2.5
    N0110 G03 X3.005 Y1.5 I0.0 J0.505
    N0120 G01 Y3.0
    N0130 G03 X3.0 Y3.005 I-0.005 J0.0
    N0140 G01 X2.6416
    N0150 G03 X2.514 Y2.8999 I0.0 J-0.13
    N0160 G02 X1.486 I-0.514 J0.1001
    N0170 G03 X1.3584 Y3.005 I-0.1276 J-0.0249
    N0180 G01 X1.0
    N0190 G03 X0.995 Y3.0 I0.0 J-0.005
    N0200 G01 Y2.25
    N0210 G40 X0.9655
    N0220 M50
    N0230 G00 X1.5015 Y1.5(RAP 2)
    N0240 G90
    N0250 G92
    N0260 M60
    N0270 G01 X1.75
    N0280 G02 I-0.25 J0.0
    N0290 G01 X1.501
    N0300 M50
    N0310 G00 X2.5015 Y1.5(RAP 3)
    N0320 G90
    N0330 G92
    N0340 M60
    N0350 G01 X2.75
    N0360 G02 I-0.25 J0.0
    N0370 G01 X2.501
    N0380 M46
    N0390 M50
    N0400 M30
    %
    در مجالی که برایم باقیست، باز هم همراه شما مدرسه ای می سازم

    که در آن همواره اول صبح به زبانی ساده، مهر تدریس کنند و بگویند خدا، خالق زیبایی و سراینده عشق، آفریننده ماست.

  4. #4
    مدیر کل سایت

    [ ]
    تاریخ عضویت
    2011/04/02
    محل سکونت
    شیراز
    نوشته ها
    598
    میزان امتیاز
    10
    Array

    پیش فرض

    نمونه اجرایی انواع جی کد ها:

    فایل را از حالت فشرده خارج نمایید و فایلهای موجود را با نرم افزار نوت پد باز نمایید.
    فايل هاي پيوست شده
    • نوع فایل: zip codes.zip (14.0 کیلو بایت, 6 نمايش)
    در مجالی که برایم باقیست، باز هم همراه شما مدرسه ای می سازم

    که در آن همواره اول صبح به زبانی ساده، مهر تدریس کنند و بگویند خدا، خالق زیبایی و سراینده عشق، آفریننده ماست.

موضوعات مشابه

  1. مشکل در گرفتن g-code
    توسط erfan.rz در انجمن ArtCam Pro
    پاسخ: 1
    آخرين نوشته: 2015/07/01, 14:56

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •